МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Министерство образования и молодежной политики
Свердловской области
Управление образованием Асбестовского городского округа
МБОУ "СОШ № 1 им. М. Горького"
СОГЛАСОВАНО:
Зам. директора по УВР
________И.В.Перевалова
26.08.2024 г.
УТВЕРЖДАЮ:
Директор
_____________А.Ю.Таратынов
Приказ 58-ОД от 26.08.2024 г.
РАБОЧАЯ ПРОГРАММА
факультативного курса «Решение задач повышенной сложности»
для обучающихся 9 классов
г.Асбест 2024 г.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОГО
КУРСА «РЕШЕНИЕ ЗАДАЧ ПОВЫШЕННОЙ СЛОЖНОСТИ» НА УРОВНЕ
ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ (ДЛЯ 9 КЛАССА)
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
Личностные результаты освоения программы учебного курса «Алгебра»
характеризуются:
1) патриотическое воспитание:
проявлением интереса к прошлому и настоящему российской математики,
ценностным отношением к достижениям российских математиков и российской
математической школы, к использованию этих достижений в других науках и прикладных
сферах;
2) гражданское и духовно-нравственное воспитание:
готовностью к выполнению обязанностей гражданина и реализации его прав,
представлением о математических основах функционирования различных структур,
явлений, процедур гражданского общества (например, выборы, опросы), готовностью к
обсуждению этических проблем, связанных с практическим применением достижений
науки, осознанием важности морально-этических принципов в деятельности учёного;
3) трудовое воспитание:
установкой на активное участие в решении практических задач математической
направленности, осознанием важности математического образования на протяжении всей
жизни для успешной профессиональной деятельности и развитием необходимых умений,
осознанным выбором и построением индивидуальной траектории образования и
жизненных планов с учётом личных интересов и общественных потребностей;
4) эстетическое воспитание:
способностью к эмоциональному и эстетическому восприятию математических
объектов, задач, решений, рассуждений, умению видеть математические закономерности в
искусстве;
5) ценности научного познания:
ориентацией в деятельности на современную систему научных представлений об
основных закономерностях развития человека, природы и общества, пониманием
математической науки как сферы человеческой деятельности, этапов её развития и
значимости для развития цивилизации, овладением языком математики и математической
культурой как средством познания мира, овладением простейшими навыками
исследовательской деятельности;
6)
физическое
воспитание,
формирование
культуры
здоровья
и
эмоционального благополучия:
готовностью применять математические знания в интересах своего здоровья,
ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и
отдыха, регулярная физическая активность), сформированностью навыка рефлексии,
признанием своего права на ошибку и такого же права другого человека;
7) экологическое воспитание:
ориентацией на применение математических знаний для решения задач в области
сохранности окружающей среды, планирования поступков и оценки их возможных
последствий для окружающей среды, осознанием глобального характера экологических
проблем и путей их решения;
8) адаптация к изменяющимся условиям социальной и природной среды:
готовностью к действиям в условиях неопределённости, повышению уровня своей
компетентности через практическую деятельность, в том числе умение учиться у других
людей, приобретать в совместной деятельности новые знания, навыки и компетенции из
опыта других;
необходимостью в формировании новых знаний, в том числе формулировать идеи,
понятия, гипотезы об объектах и явлениях, в том числе ранее неизвестных, осознавать
дефициты собственных знаний и компетентностей, планировать своё развитие;
способностью осознавать стрессовую ситуацию, воспринимать стрессовую
ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и
действия, формулировать и оценивать риски и последствия, формировать опыт.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Познавательные универсальные учебные действия
Базовые логические действия:
выявлять и характеризовать существенные признаки математических объектов,
понятий, отношений между понятиями, формулировать определения понятий,
устанавливать существенный признак классификации, основания для обобщения и
сравнения, критерии проводимого анализа;
воспринимать, формулировать и преобразовывать суждения: утвердительные и
отрицательные, единичные, частные и общие, условные;
выявлять математические закономерности, взаимосвязи и противоречия в фактах,
данных, наблюдениях и утверждениях, предлагать критерии для выявления
закономерностей и противоречий;
делать выводы с использованием законов логики, дедуктивных и индуктивных
умозаключений, умозаключений по аналогии;
разбирать доказательства математических утверждений (прямые и от противного),
проводить самостоятельно несложные доказательства математических фактов,
выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать
собственные рассуждения;
выбирать способ решения учебной задачи (сравнивать несколько вариантов решения,
выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).
Базовые исследовательские действия:
использовать вопросы как исследовательский инструмент познания, формулировать
вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать
искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
проводить по самостоятельно составленному плану несложный эксперимент,
небольшое исследование по установлению особенностей математического объекта,
зависимостей объектов между собой;
самостоятельно формулировать обобщения и выводы по результатам проведённого
наблюдения, исследования, оценивать достоверность полученных результатов, выводов
и обобщений;
прогнозировать возможное развитие процесса, а также выдвигать предположения о его
развитии в новых условиях.
Работа с информацией:
выявлять недостаточность и избыточность информации, данных, необходимых для
решения задачи;
выбирать, анализировать, систематизировать и интерпретировать информацию
различных видов и форм представления;
выбирать форму представления информации и иллюстрировать решаемые задачи
схемами, диаграммами, иной графикой и их комбинациями;
оценивать надёжность информации по критериям, предложенным учителем или
сформулированным самостоятельно.
Коммуникативные универсальные учебные действия:
воспринимать и формулировать суждения в соответствии с условиями и целями
общения, ясно, точно, грамотно выражать свою точку зрения в устных и письменных
текстах, давать пояснения по ходу решения задачи, комментировать полученный
результат;
в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы,
решаемой задачи, высказывать идеи, нацеленные на поиск решения, сопоставлять свои
суждения с суждениями других участников диалога, обнаруживать различие и сходство
позиций, в корректной форме формулировать разногласия, свои возражения;
представлять результаты решения задачи, эксперимента, исследования, проекта,
самостоятельно выбирать формат выступления с учётом задач презентации и
особенностей аудитории;
понимать и использовать преимущества командной и индивидуальной работы при
решении учебных математических задач;
принимать цель совместной деятельности, планировать организацию совместной
работы, распределять виды работ, договариваться, обсуждать процесс и результат
работы, обобщать мнения нескольких людей;
участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые
штурмы и другие), выполнять свою часть работы и координировать свои действия с
другими членами команды, оценивать качество своего вклада в общий продукт по
критериям, сформулированным участниками взаимодействия.
Регулятивные универсальные учебные действия
Самоорганизация:
самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать
способ решения с учётом имеющихся ресурсов и собственных возможностей,
аргументировать и корректировать варианты решений с учётом новой информации.
Самоконтроль, эмоциональный интеллект:
владеть способами самопроверки, самоконтроля процесса и результата решения
математической задачи;
предвидеть трудности, которые могут возникнуть при решении задачи, вносить
коррективы в деятельность на основе новых обстоятельств, найденных ошибок,
выявленных трудностей;
оценивать соответствие результата деятельности поставленной цели и условиям,
объяснять причины достижения или недостижения цели, находить ошибку, давать
оценку приобретённому опыту.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
.
К концу обучения в 9 классе обучающийся получит следующие предметные
результаты:
Числа и вычисления
Сравнивать и упорядочивать рациональные и иррациональные числа.
Выполнять арифметические действия с рациональными числами, сочетая устные и
письменные приёмы, выполнять вычисления с иррациональными числами.
Находить значения степеней с целыми показателями и корней, вычислять значения
числовых выражений.
Округлять действительные числа, выполнять прикидку результата вычислений, оценку
числовых выражений.
Уравнения и неравенства
Решать линейные и квадратные уравнения, уравнения, сводящиеся к ним, простейшие
дробно-рациональные уравнения.
Решать системы двух линейных уравнений с двумя переменными и системы двух
уравнений, в которых одно уравнение не является линейным.
Решать текстовые задачи алгебраическим способом с помощью составления уравнения
или системы двух уравнений с двумя переменными.
Проводить простейшие исследования уравнений и систем уравнений, в том числе с
применением графических представлений (устанавливать, имеет ли уравнение или
система уравнений решения, если имеет, то сколько, и прочее).
Решать
линейные
неравенства,
квадратные
неравенства,
изображать
неравенств на числовой прямой, записывать решение с помощью символов.
решение
Решать системы линейных неравенств, системы неравенств, включающие квадратное
неравенство, изображать решение системы неравенств на числовой прямой, записывать
решение с помощью символов.
Использовать неравенства при решении различных задач.
Функции
Распознавать функции изученных видов. Показывать схематически расположение на
координатной плоскости графиков функций вида: y = kx, y = kx + b, y = k/x, y = ax2 +
bx + c, y = x3, y = √x, y = |x|, в зависимости от значений коэффициентов, описывать
свойства функций.
Строить и изображать схематически графики квадратичных функций, описывать
свойства квадратичных функций по их графикам.
Распознавать квадратичную функцию по формуле, приводить примеры квадратичных
функций из реальной жизни, физики, геометрии.
Числовые последовательности и прогрессии
Распознавать арифметическую и геометрическую прогрессии при разных способах
задания.
Выполнять вычисления с использованием формул n-го члена арифметической и
геометрической прогрессий, суммы первых n членов.
Изображать члены последовательности точками на координатной плоскости.
Решать задачи, связанные с числовыми последовательностями, в том числе задачи из
реальной жизни (с использованием калькулятора, цифровых технологий).
Содержание курса
1. Числа и алгебраические выражения.
Натуральные и целые числа. Обыкновенные и десятичные дроби. Рациональные и
иррациональные числа. Арифметические операции на множестве действительных
чисел. Вычисление процентов. Модуль числа. Алгебраические выражения.
2. Преобразование алгебраических выражений.
Применение
формул
сокращенного
умножения.
Выполнение
арифметических
действий с алгебраическими выражениями, содержащими степень. Алгебраические
дроби.
3. Уравнения и системы уравнений.
Уравнения с одним неизвестным. Алгебраические уравнения с одним неизвестным.
Нахождение целых и рациональных корней. Алгебраические уравнения с целыми
коэффициентами. Уравнения, содержащие модуль. Системы двух линейных уравнений
с двумя неизвестными. Уравнения и системы уравнений с параметрами.
4. Неравенства и системы неравенств.
Линейные и квадратные неравенства с одним неизвестным. Дробно-рациональные
неравенства и обобщенный метод интервалов. Использование свойств неравенств.
Неравенства, содержащие модуль. Нестрогие неравенства. Неравенства с двумя
переменными. Неравенства и системы неравенств с параметрами.
5. Функция и ее график. Чтение графика функции.
Область определения функции. Множество значений функции. Способы задания
функции. Четные и нечетные, возрастающие и убывающие функции. Точки максимума
и минимума. Наибольшее и наименьшее значение функции. Промежутки возрастания
и убывания. Интервал знакопостоянства функции. Графики линейной функции,
квадратичной функции, обратно пропорциональной зависимости. Преобразование
графиков. Графики функций, содержащие знак модуля. Графики дробно-линейной и
дробно-рациональной функции. Чтение графика функции. Определение характеристик
функций по ее графику.
6. Последовательности и прогрессии.
Числовые
последовательности.
Способы
задания
последовательности.
Арифметическая прогрессия. Геометрическая прогрессия. Формула n-члена и сумма n
первых
членов
прогрессии.
прогрессии.
7. Вероятность и статистика.
Решение задач.
Сумма
бесконечно
убывающей
геометрической
8. Геометрия.
Треугольники. Четырехугольники. Окружность. Комбинированные задачи.
Тематическое планирование
№
Название темы
п/п
Количество часов
Всего
Теория
Практика
1
Числа и алгебраические выражения.
2
0
2
2
Преобразование алгебраических
2
1
1
выражений.
3
Уравнения и системы уравнений.
2
1
1
4
Неравенства и системы неравенств.
2
1
1
5
Функция и ее график. Чтение графика
2
0
2
функции.
6
Последовательности и прогрессии.
2
0
2
7
Вероятность и статистика.
2
0
2
8
Геометрия.
3
1
2